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With the efforts of scientists around the world, the power
conversion efficiency (PCE) of perovskite solar cells (PSCs) has
reached  25.7%.  To  further  improve  the  efficiency  and  break
through  the  Shockley-Queisser  (S-Q)  limit,  it  is  promising  to
construct  all-perovskite  tandem  solar  cells via combining
wide-bandgap  and  narrow-bandgap  perovskites[1−5].  As  the
key  light-harvesting  material  for  the  bottom  cell  in  all-per-
ovskite tandem devices, the narrow-bandgap Pb–Sn mixed per-
ovskites have attracted increasing interest in recent years[6−8].
However, the Pb–Sn mixed perovskites suffer from uncontrol-
lable  crystallization,  easy  oxidation  of  Sn2+ and  high  defect
density, which significantly limit PCE improvement[9, 10]. Organ-
ic  ammonium  halides  can  improve  the  efficiency  and  stabil-
ity of Pb–Sn mixed PSCs.

Organic  ammonium  halides  can  be  employed  as  addit-
ives to modulate the crystallization of Pb–Sn perovskite films,
or  passivate  surface  defects via post-treatment.  Tong et  al.
found  that  the  incorporation  of  guanidinium  thiocyanate
(GuaSCN) in  (FASnI3)0.6(MAPbI3)0.4 perovskite  film can signific-
antly  improve  the  optoelectronic  properties[11].  SCN– can  in-
crease  grain  size  and  improve  film  morphology,  while  Gua+

can  participate  in  constructing  2D  phases  at  grain  boundar-
ies to prevent Sn vacancy diffusion and protect  the film from
oxygen erosion. The optimized film offered a prolonged carri-
er lifetime (>1 μs) (Fig.  1(a)),  yielding PCEs of 20.5%, 25% and
23.1%  for  single-junction  solar  cell,  four-terminal  (4-T)  and
two-terminal  (2-T)  tandem  devices,  respectively.  Similarly,
Zhou et  al. added  12%  guanidinium  bromide  (GABr)  into
FA0.7MA0.3Pb0.7Sn0.3I3 perovskite  film  with  a  bandgap  of  1.34
eV[12].  They  found  that  GABr  can  effectively  reduce  the  de-
fect  density  and  facilitate  charge  transport.  Consequently,
GABr-modified  Pb–Sn  PSCs  gave  a  PCE  of  20.63%  with  en-
hanced environmental and thermal stability. To achieve vertic-
ally aligned crystals, Li et al. introduced 2-(4-fluorophenyl)ethyl-
ammonium iodide (FPEAI) into (MAPbI3)0.75(FASnI3)0.25 to form
2D/3D structure to induce oriented growth[13]. FPEAI-based per-
ovskite  film  presented  (110)-preferred  orientation  (Fig.  1(b)),
which  is  beneficial  for  effective  charge  transport  and  extrac-
tion.  Meanwhile,  the  2D/3D  structure  can  suppress  Pb–Sn
phase segregation.  As  a  result,  the  2D/3D hybrid  Pb–Sn PSCs
delivered  a  PCE  of  17.51%  with  superior  stability.  Compared

with  Ruddlesden-Popper  (R-P)  2D  phases  formed  by  mono-
valent  organic  cations,  the  interlayer  distance  of  Dion-Jacob-
son  (D-J)  2D  phases  achieved  by  divalent  organic  cations  is
much  shorter,  and  D-J  2D  phase  is  less  resistant  to  charge
transfer[14].  Ke et  al. developed  a  D-J  2D  structure  using  a
divalent  3-(aminomethyl)piperidinium  (3AMP)  spacer  for
MA0.5FA0.5Pb0.5Sn0.5I3 perovskite films, affording a longer carri-
er  lifetime of  657.7  ns  and a  PCE of  20.09% with an open-cir-
cuit  voltage  (Voc)  of  0.88  V[15].  To  avoid  excess  formation  of
2D phases which could block charge transfer, Wei et al. dexter-
ously  designed  an  ultrathin  2D  layer  capping  Pb–Sn  per-
ovskite film surface[16]. Ethyl acetate (EA) with 0.5 mg/mL phen-
ethylammonium  iodide  (PEAI)  was  applied  as  anti-solvent  in
film preparation. This approach not only passivated surface de-
fects,  but  also  avoided  excess  formation  of  2D  phases,  yield-
ing PCEs  of  19.4% and 23.7% for  single-junction and 2-T  tan-
dem solar cells, respectively. Low-dimensional structure treat-
ment  by  using  organic  ammonium  halides  has  been  widely
used  to  improve  the  performance  of  PSCs.  However,  most
post-treatment  results  in  the  formation  of  one  layer  (1L)  2D
structure  on  film  surface,  which  could  severely  impede
charge  extraction.  Ning et  al.  designed  a  new  molecule  2-
thiopheneethylamine thiocyanate (TEASCN) to construct bilay-
er (2L) quasi-2D structure that allowed effective charge trans-
fer[17].  For  comparison,  2-thiopheneethylamine  iodide  (TEAI)
was  also  used  for  surface  treatment.  Interestingly,  though
both TEAI  and TEASCN treatment formed 1L structure during
spin-coating  process,  the  1L  structure  of  TEASCN  film  trans-
formed to 2L structure after annealing process, while 1L struc-
ture of TEAI film remained on the surface (Figs. 1(c) and 1(d)).
The  density  functional  theory  (DFT)  calculation  revealed  that
the formation energy from TEA2SnI2SCN2 to  TEA2FASn2I5SCN2

is  close  to  zero,  suggesting  the  easy  transformation  from  1L
to  2L,  which  explains  the  formation  of  the  2L  structure.  The
2L  structure  on  the  surface  can  not  only  ensure  effective
charge  transfer,  but  also  improve  thermal  stability  of  Pb–Sn
perovskite films. TEASCN-treated Pb–Sn PSCs offered a PCE of
21.1%.

Besides  forming  2D  structures,  organic  ammonium  hal-
ides  are  also  effective  passivators.  Lee et  al. introduced
butylammonium  (BA)  halide  (2%)  into  FA0.83Cs0.17Pb0.5Sn0.5I3

precursor, and they found that BA cations allow self-aggrega-
tion  on  the  surface  and  at  the  bottom  of  perovskite  films[18].
The BA cations on the film surface can suppress the diffusion
of Ag into perovskite film, while BA cations at the buried inter-
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face can suppress the perovskite degradation induced by sulf-
onic  acid  groups  in  PEDOT:PSS.  Most  importantly,  BA  cations
can induce a more phase-pure perovskite film with (100)-pre-
ferred  orientation,  reducing  the  trap  states.  With  these  mer-
its,  BA-based  FA0.83Cs0.17Pb0.5Sn0.5I3 solar  cells  gave  a  PCE  of
18.66%.  Liang et  al. proposed  a  selective  targeting  anchor
(STA)  strategy via jointly  employing  PEAI  and  ethylenediam-
ine diiodide (EDAI2) to passivate surface defects of Pb–Sn per-
ovskite films[19]. Combining DFT calculations and optoelectron-
ic  techniques,  they  demonstrated  that  PEA+ and  EDA2+

cations  can  selectively  anchor  [PbI6]4− and  [SnI6]4− octahed-
ron,  respectively,  through  filling  A-site  vacancies  (Fig.  2(a)).
The STA strategy yielded a champion PCE of  22.51%, and the
cells can retain 80% of the initial  PCE after being stored in N2

glovebox for 2700 h. Hu et al. modified the bottom surface of
Cs0.1FA0.6MA0.3- Pb0.5Sn0.5I3 film via adding glycine hydrochlor-
ide  (GlyHCl)  into  the  perovskite  precursor,  and  GlyH+ cations
can  self-assemble  at  the  bottom  surface  to  passivate  trap
states[20].  They  further  passivated  the  surface  defects  by  us-

ing  EDAI2.  GlyH+ and  EDA2+ cations  can  form  interface  di-
poles  to  facilitate  charge  extraction.  A  PCE  of  23.6%  was  ob-
tained,  which  is  the  record  for  Pb–Sn  PSCs.  In  our  previous
work, we introduced a trace amount of propanediamine diiod-
ide  (PDAI2)  into  FA0.7MA0.3Pb0.5Sn0.5I3 precursor  to  induce  ori-
ented crystal growth[21]. PDA cations can anchor onto the nuc-
lei to induce (100)-preferred orientation through strong interac-
tions  between PDA cations  and [PbI6]4− and [SnI6]4− octahed-
ron. Then, the nuclei would act as a surface template to modu-
late  the  crystal  growth  along  (100)  orientation,  and  PDA
cations kept on the crystal surface (Fig. 2(b)). The DFT calcula-
tions  and  experimental  characterizations  confirmed  that  the
(100)-oriented  perovskite  crystals  have  reduced  trap  states
and higher  carrier  mobilities.  Consequently,  the PCE for  PDA-
based  solar  cells  was  improved  from  16.62%  to  20.03%.  Ow-
ing to the relatively low light absorption coefficient, highly effi-
cient  Pb–Sn  PSCs  require  thick  (~1 μm)  perovskite  films.
However,  the short carrier  diffusion lengths caused by severe
trap  states  limit  the  carrier  transport  in  thick  Pb–Sn  per-

 

Fig. 1. (Color online) (a) Time-resolved photoluminescence of GuaSCN-based perovskite film. Reproduced with permission[11], Copyright 2019, Sci-
ence Publishing Group. (b) X-ray diffraction patterns for the perovskite films with and without FPEAI. Reproduced with permission[13], Copyright
2020, American Chemical Society. Schematics for perovskite films treated with (c) TEAI and (d) TEASCN, and the corresponding energy level dia-
grams. Reproduced with permission[17], Copyright 2022, Wiley-VCH.
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ovskite films. Tan et al. developed a ~1.2 μm thick Pb–Sn per-
ovskite  film  with  long  diffusion  length  exceeding  5 μm[22].
PEA, phenylammonium (PA) and 4-trifluoromethyl-phenylam-
monium  (CF3-PA)  cations  were  employed  as  passivators  in
the precursor solution. DFT calculations revealed that electro-
static potentials at the -NH3

+ terminal of the three cations are
different: PEA < PA < CF3-PA. High electrostatic potential is be-
neficial for molecules anchoring onto perovskite crystals. Dur-
ing the  annealing process  of  perovskite  films,  CF3-PA cations
showed  the  strongest  tendency  to  anchor  on  the  crystal  sur-

face via filling  A-site  vacancies  (Fig.  2(c)).  Meanwhile,  the
strong  interaction  between  CF3-PA  and  perovskite  can  also
suppress  the  formation  of  iodine  vacancies,  ISn and  IPb antis-
ite  defects.  The  significantly  reduced  trap  states  contributed
to enhanced carrier lifetimes and diffusion lengths, yielding a
PCE  of  22.2%  for  single-junction  solar  cells  and  a  PCE  of
26.4% for tandem cells.

In  short,  organic  ammonium  halides  can  modulate  crys-
tal  growth,  passivate  trap  sites  and  modify  interfaces  of
Pb–Sn mixed perovskite films to enhance the device perform-

 

Fig.  2.  (Color online) (a)  Schematic for the selective targeting anchor strategy by using EDAI2 and PEAI.  Reproduced with permission[19],  Copy-
right  2022,  Wiley-VCH.  (b)  Schematic  for  the  crystal  growth  without  and  with  PDA  cations.  Reproduced  with  permission[21],  Copyright  2022,
Wiley-VCH.  (c)  Molecular  dynamics  snapshots  and  top  views  for  perovskite  surfaces  anchored  with  CF3-PA,  PA  and  PEA,  respectively.  Repro-
duced with permission[22], Copyright 2022, Nature Publishing Group.
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ance.  Rational  molecular  design  of  organic  ammonium  hal-
ides  can  help  to  develop  efficient  Pb–Sn  mixed  PSCs,  applic-
able in all-perovskite tandem solar cells.
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